skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Zecheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Symbolic encoding has been used in multioperator learning (MOL) as a way to embed additional information for distinct time-series data. For spatiotemporal systems described by time-dependent partial differential equations (PDEs), the equation itself provides an additional modality to identify the system. The utilization of symbolic expressions alongside time-series samples allows for the development of multimodal predictive neural networks. A key challenge with current approaches is that the symbolic information, i.e., the equations, must be manually preprocessed (simplified, rearranged, etc.) to match and relate to the existing token library, which increases costs and reduces flexibility, especially when dealing with new differential equations. We propose a new token library based on SymPy to encode differential equations as an additional modality for time-series models. The proposed approach incurs minimal cost, is automated, and maintains high prediction accuracy for forecasting tasks. Additionally, we include a Bayesian filtering module that connects the different modalities to refine the learned equation. This improves the accuracy of the learned symbolic representation and the predicted time-series. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Free, publicly-accessible full text available January 1, 2026
  4. Free, publicly-accessible full text available December 10, 2025
  5. Latent diffusion models have been demonstrated to generate high-quality images, while offering efficiency in model training compared to diffusion models operating in the pixel space. However, incorporating latent diffusion models to solve inverse problems remains a challenging problem due to the nonlinearity of the encoder and decoder. To address these issues, we propose ReSample, an algorithm that can solve general inverse problems with pre-trained latent diffusion models. Our algorithm incorporates data consistency by solving an optimization problem during the reverse sampling process, a concept that we term as hard data consistency. Upon solving this optimization problem, we propose a novel resampling scheme to map the measurement-consistent sample back onto the noisy data manifold and theoretically demonstrate its benefits. Lastly, we apply our algorithm to solve a wide range of linear and nonlinear inverse problems in both natural and medical images, demonstrating that our approach outperforms existing state-of-the-art approaches, including those based on pixel-space diffusion models. 
    more » « less
  6. Abstract We consider the inverse source problem in the parabolic equation, where the unknown source possesses the semi-discrete formulation. Theoretically, we prove that the flux data from any nonempty open subset of the boundary can uniquely determine the semi-discrete source. This means the observed area can be extremely small, and that is the reason we call it sparse boundary data. For the numerical reconstruction, we formulate the problem from the Bayesian sequential prediction perspective and conduct the numerical examples which estimate the space-time-dependent source state by state. To better demonstrate the method’s performance, we solve two common multiscale problems from two models with a long source sequence. The numerical results illustrate that the inversion is accurate and efficient. 
    more » « less